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Definitions: modeling and simulation  

A  model is an idealization of real behavior, i.e., an 
approximate description based on empirical and/or 
physical reasoning. 

A  simulation is a study of the dynamical response of a 
modeled system found by subjecting models to inputs 
and constraints that simulate real events.  

A simulation does not mimic reality, rather it mimics a 
model of reality.  
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modeling and simulation  

The accuracy of a simulation depends on many factors, 
some involving the simulation method itself (accuracy in 
solving sets of equations, for example).  

Often, however, the biggest errors in a simulation, as 
least with respect to how well it describes a real system, 
are the inadequacies of the models upon which the 
simulation is based.  

Thus, one cannot separate  simulations from the 
underlying models. 
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How do we create models?

Useful article by Mike Ashby
(Materials Science and 
Technology 8, 102 (1992))

Discusses a systematic 
procedure that one can follow to 
produce models.

Many models would have been 
improved if this process had 
been followed.

Think before you compute!
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scales of deformation 

based on Ashby, Physical modelling of materials problems. Mater. Sci. Tech. 8, 102–111 (1992). 
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Uncertainty: the
maximum estimated
amount by which the
value of a quantity,
obtained from
experiment, theory,
simulation, or other
means, is expected to
differ from the true
value

Simulation:
numerical analysis of
the equations
describing the model
behavior; often
performed with the aid
of a computer

Model: an
idealization of the
phenomenon, i.e., an
approximate
description based on
empirical and/or
physical reasoning that
captures its essential
features

1. INTRODUCTION
Uncertainty quantification (UQ) and related areas, such as risk analysis and decision making, have a
long and successful history of development and applications in diverse areas such as climate change
(1, 2), structural engineering (3), and medicine (4, 5). UQ has not, however, been fully recognized
as a central question for materials simulation. The goal of this article is to provide an overview of
the techniques developed for UQ, with a focus on approaches introduced for the description of
epistemic uncertainty (or lack of knowledge; see definition and more detailed discussion below)
and applications, although there are few applications of these approaches in the simulations of
materials properties. A key challenge for understanding and predicting the properties of materials
is the broad range of length scales and timescales that govern materials behavior. These scales
range from the angstrom and subpicoseconds of atomic processes to the meters and years of
fracture and fatigue phenomena in many materials in engineered applications. Between these
extremes lies a complex set of behaviors that depend on the type of materials as well as on their
specific engineering application. We show a simple example of this range of behaviors in Table 1,
highlighting the various scales that govern the mechanical behavior of materials, especially metals.
A different choice of materials type or property would lead to a figure that would likely be similar
in form, although very different in detail.

The complexity illustrated in Table 1 has long hindered the development of new materials for
specific applications, with an obvious negative impact on technological and economic develop-
ment. Over the past few years, it has become increasingly clear that a new approach to accelerated
materials development is needed, in which information and data from both experiment and sim-
ulation are synthesized across timescales and/or length scales; this approach is sometimes termed
integrated computational materials science and engineering (ICMSE) (6). An even more exciting
prospect is to go beyond ICMSE to concurrent engineering, in which the computational design of
the material becomes an integral part of the overall design process of the engineered application,
optimizing the overall design to take full advantage of the materials characteristics in ways not
currently possible (7, 8).

Modeling and simulation are central to ICMSE and concurrent design. Theoretical models are
abstract, mathematical representations of actual, real-life structures and processes. Constructing
a model starts with a choice of which phenomena should be included (and thus, by implication,

aIn the first column, we indicate an important unit structure at each scale; in the second and third columns, the approximate
length scales and timescales; and in the fourth column, the approach used to understand and represent the material’s
mechanical behavior at those scales.

Table 1 Length scales and timescales used to describe the mechanics of materials, as adapted from
Reference 9a

Unit
Complex structure
Simple structure
Component
Grain microstructure
Dislocation microstructure
Single dislocation
Atomic
Electron orbitals

Length scale
10  m3

10  m1

10–1 m
10–3 m
10–5 m
10–7 m
10–9 m
10–11 m

Timescale
10  s6

10  s3

10  s0

10–3 s
10–6 s
10–9 s
10–12 s
10–15 s

Mechanics
Structural mechanics
Fracture mechanics
Continuum mechanics
Crystal plasticity
Micromechanics
Dislocation dynamics
Molecular dynamics
Quantum mechanics

158 Chernatynskiy · Phillpot · LeSar

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

3.
43

:1
57

-1
82

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f F
lo

rid
a 

- S
m

at
he

rs
 L

ib
ra

ry
 o

n 
07

/0
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

we typically have methods and models for individual scales of 
behavior - the coupling across scales is referred to as multiscale

6



experiments
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\

strain hardening in single fcc crystals

despite 80 years 
of dislocations, 
we have no good 
theories for this 
fundamental 
structure-
property relation

single crystal under single slip
µ is the shear modulus

(slope ~ μ)

Mughrabi, Phil. Mag. 23, 869 (1971)

1 µm
Szekely, Groma, Lendvai, Mat. Sci. 
	

 Engin. A 324, 179 (2002)

1 µm

Mughrabi, Phil. Mag. 23, 869 (1971)

1 µm

 ρ
1/2 ∝τTaylor law:
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pure Ni at small scales

strong size effects, 
stochastic variation, 
intermittent flow, stresses 
sufficient to activate most 
slip systems.
Dimiduk, Uchic, and coworkers (many papers, 
including Science 2004).
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Diffrac'on	
  Contrast	
  STEM	
  Tilt	
  Series

0.6 µm Thick 
Mo fiber

J. Kwon (OSU)

EFRC Center for Defect 
Physics (DOE-BES)

courtesy of Mike Mills
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Plasticity
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slip 
plane

→ →

←

→ →

← ← ←

edge dislocations

movement of an 
edge dislocation

the Burgers vector b is a 
measure of the displacement of 
the lattice

note the deformation that 
arises from the movement 
of the dislocation

⊥

←a→
x→

b

   

b ⊥ ξ̂

distortion of lattice leads to 
strain field and, thus, a stress

annihilation

1934 
(Taylor, Polanyi, 
Orowan)

⊥ ⊥ ⊥ ⊥

⊥ ⊥⊤⊤
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screw dislocations b

b

   

b || ξ̂

mixed dislocations
E

E

EE

E

F

F

F

FA

B C

D

EE

E E

⊥ ⊤
F

F

F

F

S

S

   

b ⊥ ξ̂    


b || ξ̂

the Burgers vector is constant for 
a dislocation loop

1939
(Burgers)
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D

h θ

plastic strain

macroscopic displacement:

plastic strain:  

Hull and Bacon, Introduction to Dislocations (2001)

  
D = b

d
xi

i=1

N

∑

  

ε p =
D
h
= b

dh
xi

i=1

N

∑ = b N
dh

x

ε p = bρ x

stress

stress

h

d

b

xiD

  

ε p = θ

θ = tan−1 D
h

⎛
⎝⎜

⎞
⎠⎟
≈ D

h

ρ = dislocation density = m/m3 = 1/m2
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plasticity

total strain:

stress/strain:

for an applied stress of σ:

      elastic strain from:

      plastic strain from:

 σ ij = cijklε kl
e = cijkl ε kl − ε kl

p( )

 ε kl = ε kl
e + ε kl

p

  
ε p =

b
dh

xi
i=1

N

∑
 σ ij = cijklε kl

e

ε

σ

εeεp

σapp

not to scale

goal of simulations:
calculate plastic strain
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dislocation generation and motion

dislocations primarily move on slip (glide) planes:

bowing from pinned sites

Frank-Read source

bowing around obstacles 

dislocations “grow” 

serves to generate 
new dislocations

basis for first dislocation 
simulation by Foreman 

and Makin (1967)
16



dislocation processes that move edges off 
their slip plane
out of plane motion (activated processes):

climb:  
a diffusive process

cross slip:
screw dislocation can move off 
slip plane

stress and temperature 
activated

 (111) plane
 (111) plane

S
b

 [101]

⊥ ⊥
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Simulations
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scales of deformation 

based on Ashby, Physical modelling of materials problems. Mater. Sci. Tech. 8, 102–111 (1992). 
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Uncertainty: the
maximum estimated
amount by which the
value of a quantity,
obtained from
experiment, theory,
simulation, or other
means, is expected to
differ from the true
value

Simulation:
numerical analysis of
the equations
describing the model
behavior; often
performed with the aid
of a computer

Model: an
idealization of the
phenomenon, i.e., an
approximate
description based on
empirical and/or
physical reasoning that
captures its essential
features

1. INTRODUCTION
Uncertainty quantification (UQ) and related areas, such as risk analysis and decision making, have a
long and successful history of development and applications in diverse areas such as climate change
(1, 2), structural engineering (3), and medicine (4, 5). UQ has not, however, been fully recognized
as a central question for materials simulation. The goal of this article is to provide an overview of
the techniques developed for UQ, with a focus on approaches introduced for the description of
epistemic uncertainty (or lack of knowledge; see definition and more detailed discussion below)
and applications, although there are few applications of these approaches in the simulations of
materials properties. A key challenge for understanding and predicting the properties of materials
is the broad range of length scales and timescales that govern materials behavior. These scales
range from the angstrom and subpicoseconds of atomic processes to the meters and years of
fracture and fatigue phenomena in many materials in engineered applications. Between these
extremes lies a complex set of behaviors that depend on the type of materials as well as on their
specific engineering application. We show a simple example of this range of behaviors in Table 1,
highlighting the various scales that govern the mechanical behavior of materials, especially metals.
A different choice of materials type or property would lead to a figure that would likely be similar
in form, although very different in detail.

The complexity illustrated in Table 1 has long hindered the development of new materials for
specific applications, with an obvious negative impact on technological and economic develop-
ment. Over the past few years, it has become increasingly clear that a new approach to accelerated
materials development is needed, in which information and data from both experiment and sim-
ulation are synthesized across timescales and/or length scales; this approach is sometimes termed
integrated computational materials science and engineering (ICMSE) (6). An even more exciting
prospect is to go beyond ICMSE to concurrent engineering, in which the computational design of
the material becomes an integral part of the overall design process of the engineered application,
optimizing the overall design to take full advantage of the materials characteristics in ways not
currently possible (7, 8).

Modeling and simulation are central to ICMSE and concurrent design. Theoretical models are
abstract, mathematical representations of actual, real-life structures and processes. Constructing
a model starts with a choice of which phenomena should be included (and thus, by implication,

aIn the first column, we indicate an important unit structure at each scale; in the second and third columns, the approximate
length scales and timescales; and in the fourth column, the approach used to understand and represent the material’s
mechanical behavior at those scales.

Table 1 Length scales and timescales used to describe the mechanics of materials, as adapted from
Reference 9a

Unit
Complex structure
Simple structure
Component
Grain microstructure
Dislocation microstructure
Single dislocation
Atomic
Electron orbitals

Length scale
10  m3

10  m1

10–1 m
10–3 m
10–5 m
10–7 m
10–9 m
10–11 m

Timescale
10  s6

10  s3

10  s0

10–3 s
10–6 s
10–9 s
10–12 s
10–15 s

Mechanics
Structural mechanics
Fracture mechanics
Continuum mechanics
Crystal plasticity
Micromechanics
Dislocation dynamics
Molecular dynamics
Quantum mechanics
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What computational methods we use depends on what our 
questions are and the limitations of the methods.

We start by identifying the “entities” in the model.
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“density functional theory” (DFT)
entities

• electrons
• solve Schrödinger’s equation:
• too hard to solve directly, so make numerous approximations

approximations and limitations
• convert N-electron problem to N 1-electron problems and solve 

those for ψ and find the electron density, ρ (the Kohn-Sham method)
• solve equations self-consistently in potential field arising from ρ
• use approximate functionals (Exc) for potential field (LDA/GGA/...)
• limited (generally) to 1000s of atoms 
• good for dislocation core structures and small numbers of 

dislocations

 HΨ r1,
r2 ,…, rN( ) = EΨ r1, r2 ,…, rN( )

20



molecular dynamics
entities

• atoms
• force on an atom is: 
• solve Newton’s equations:
• need description of U

approximations and limitations
• potentials are analytic expressions with parameters fit to experiment 

and/or DFT (e.g., LJ, EAM)  
• reasonably good potentials are available for many systems, but great 

potentials are not available for almost anything
• limited (generally) to 100s of millions of atoms  
• time scales:  typically nanoseconds

 

Fi = −∇iU

 


Fi = mi

ai = mi
d 2ri
dt 2

U = φij rij( )
j=i+1

N

∑
i=i

N−1

∑

21



Modeling deformation on the scale of dislocation microstructures 
cannot be done at an atomistic scale:

• 1 µm3 of copper includes approximately 1011 atoms
• time steps in MD: ~10-15 sec

- MD limited to a few hundred million atoms for a nanoseconds
• atomistic simulations can describe processes that include only 

small numbers of dislocations at fast rates

limitations of atomistics

atomistic simulation of dislocations 
showing stacking fault planes between 
partials

courtesy of T. German, Los Alamos
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There are numerous methods used at the mesoscale, 
some force based and some energy based.

For force-based methods, one must
   •   define the “entities” 
   •   determine the forces
   •   define the dynamics
   •   solve the equations of motion

These methods have similarities to molecular dynamics, 
but the entities are collective variables not atoms or 
molecules

modeling at the mesoscale

23



entities

• In DFT and MD, the entities were clear:  electrons 
and atoms.

• At the mesoscale, entities could be defects, such as 
dislocations or grain boundaries, or some other 
variables that define the physics of interest. 

• These entities are collective variables, in which the 
actions of many smaller-scale entities are treated as 
one.

• We will often have flexibility in the choice of the entity, 
e.g., the many ways to model grain boundaries

• Most successful modeling is for cases in which there 
is a clear separation into collective variables

24



damped dynamics

Most applications of dynamical simulations at the 
mesoscale involve systems with damping, i.e., there 
are forces that dissipate the energy.

Standard equation of motion:

Force due to friction is usually velocity dependent:

γ is the “damping coefficient”

Net equation of motion is:

 
mi
d 2ri
dt 2

=

Fi

 

Fi
diss = −γ vi

 
mi
d 2ri
dt 2

=

Fi −γ

vi

25



solution in 1D

For constant F  (i.e., no variation with x), the solution is:

m d 2x
dt 2

= F −γ v

v t( ) = F
γ
1− e−γ t /m( )

v* = γ v / F
t* = γ t /m

tterm ≈ 3m /γ
For large damping 
(large γ), we often 
ignore the inertial 
effects and assume:

this is called the over 
damped limit

v = F
γ
= MF

26



• model the behavior of only the dislocations by treating 
them as the entities tracked in the simulation

• three main approaches
- force based (discrete dislocation dynamics)
- energy based (phase field)
- continuum methods (a “density-functional theory” - see 

recent work by Sanfeld, Hochrainer, Gumbsch, Zaiser, ...)

• today we discuss discrete dislocation dynamics

• on Friday, Professor Yunzhi Wang will discuss a phase-field 
approach

mesoscale simulations of dislocations
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• phase-field dislocations
- free-energy-based
- Ginzburg-Landau dynamics
- advantages: links naturally to other phase-field methods, 

“easy” to include energy-based phenomena (e.g., 
partials)

• dislocation dynamics
- force-based
- dynamics from equations of motion
- advantages: accurate dynamics (inertial effects), stress-

driven processes (cross slip)

• the output of both methods are similar
- dislocation substructure evolution in response to a load

phase-field and discrete dislocation dynamics
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• simple 2D model

• basics of 3D simulations

• examples:
1. small scale plasticity
2. bulk plasticity
3. strain hardening

• what is wrong with the simulations?

• connection to experiments

outline

All simulations discussed today are based on isotropic elasticity - 
including anisotropy is not difficult, just very time consuming

29



• we start with a simple 2D model that consists of parallel 
edge dislocations

• first “modern” dislocation dynamics simulations were 
based on this model (Lepinoux and Kubin, 1987; Amodeo 
and Ghoniem, 1988; Gulluoglu et al, 1989)

• such simulations require (a partial list):
1. representation of dislocations in space
2. description of interactions (forces)
3. boundary conditions
4. description of dynamics

discrete dislocation simulations in 2D
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Assume all dislocations have:

 
at low T, no climb and dislocations can only move on their 
slip planes

Step 1:  Simulation of system of straight edge 
dislocations:  represent as points in 2D

 

b = bx̂ and ξ̂ = ẑ

on any xy plane:

slip
planes

This model is sometimes referred to as 2.5 D.
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Assume:  

Stress from dislocation:

Force from this dislocation on
another dislocation:  Peach-Koehler force

Step 2a:  Interactions between dislocations

s =

0

@
s11 s12 s13
s21 s22 s23
s31 s32 s33

1

A

 

b = bx̂ and ξ̂ = ẑ

σ 12 j( ) = µbj
2π 1−υ( )

x x2 − y2( )
x2 + y2( )2

-2 -1 0 1 2
-2

-1

0

1

2

 


F i( )
L

=

bi ⋅σ j( )( )× ξ̂i

Fx i( )
L

= biσ 12 j( ) = µbibj
2π 1−υ( )

xij xij
2 − yij

2( )
xij
2 + yij

2( )2 NOTE:  long ranged 
(~1/r)

⊥

xij = x j − xi
32



Let τ be the applied shear stress:  

The force from external stress on dislocation i is:

Note:  Burger’s vector has sign:
   •  either +b or -b
   •  stress drives +/- dislocations in opposite directions

Net force (assuming N other dislocations)

Step 2b.  External stress
τ =σ 12

ext

Fx
ext i( )
L

= biτ

Fx i( )
L

= biτ +
µbibj

2π 1−υ( )
xij xij

2 − yij
2( )

xij
2 + yij

2( )2j≠i=1

N

∑
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Step 3.  Boundary conditions

Put N dislocations at random positions in a 2D periodic 
square grid with size D with equal numbers of +b and -b 
dislocations

Dislocation density is 
(all important distances in this system will scale as           )

We will look at truncations of dislocation interactions:
1. short-range cutoff
2. no cutoff

ρ = N /D2

1/ ρ1/2

34



Step 4.  Dynamics

Assume overdamped dynamics:

Assume a simple Euler equation solution:

For no external stress, run the system until converged.

Then apply an external stress, calculate change in 
dislocation position, and calculate

v t( ) = M Fx t( )
L

xi t +δ t( ) = xi t( ) + vi t( )δ t

  
Δε p =

b
D2 Δxi

i=1

N

∑ = b N
D2 Δx = bρ Δx
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Results:  truncated potential

Not quite converged (τ=0)

At converged solution:
straight lines alternating
+ and - dislocations with
spacing 1/2 the cutoff
distance

1350 DISLOCATION DISTRIBUTIONS Vol. 23, No. 8 
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FIG. 1 Simulated dislocation microstructurcs with a dislocation density of  1015 m -2 corresponding to 10 3 edge 
dislocations in a 1 gm x 1 grn simulation cell using (a) the infinitely repeated simulation cell (i.e. no cut-off) and 
(b) the truncated interaction distance (Pc = 0.5 cell size) methods. 

“Dislocation distributions in two dimensions,” A. N. Gulluoglu, D. J. Srolovitz, 
R. LeSar, P. S. Lomdahl, Scripta Metallurgica 23, 1347-1352 (1989).
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Results:  all interactions to infinity

“Dislocation distributions in two dimensions,” A. N. Gulluoglu, D. J. Srolovitz, 
R. LeSar, P. S. Lomdahl, Scripta Metallurgica 23, 1347-1352 (1989).
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FIG. 1 Simulated dislocation microstructurcs with a dislocation density of  1015 m -2 corresponding to 10 3 edge 
dislocations in a 1 gm x 1 grn simulation cell using (a) the infinitely repeated simulation cell (i.e. no cut-off) and 
(b) the truncated interaction distance (Pc = 0.5 cell size) methods. 

sign-weighted pair correlation function

shows importance of knowing how to carry out the simulation!
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Your assignment ...

We will email you a zipped folder called LeSarDD.zip.
In this folder is a file (DislocationDynamics.pdf) that 
contains a description of how to implement (in 
MATLAB) the 2D modeling I just described.  
DislocationDynamics.pdf also contains some exercises 
to consider.  
There is also a folder called code that contains 2 other 
folders.  The one called DD2D contains MATLAB code 
for this problem.
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2D models show interesting behavior, but ...

• many interesting simulations have been done with these 
2D (2.5 D) models

• Alan Needleman and Erik van der Giessen in particular 
have done very nice work, including coupling to 
continuum models

• However, dislocation plasticity is 3D
 

La Femme Au Miroir 
 Fernand Leger, 1920

• Michael Zaiser (Erlangen) once 
describe these 2D simulations as 
“cubist” representations of plasticity
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• include dislocations moving along all active slip planes to 
examine evolution and response

• pioneering simulations by Kubin (early 90s).  Many groups 
doing lovely work:  Kubin and “offspring” (Devincre, 
Madec, Fivel, ...), Bulatov, Cai, Weygand, Gumbsch, 
Schwarz, Ghoniem, Wang, El-Awady, Zhou, ...

• such simulations require (a partial list):
1. representation of dislocations in space
2. description of interactions (forces)
3. boundary conditions
4. description of dynamics
5. approximations, models, etc.

discrete dislocation simulations in 3D
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Step 1:  approaches to representing dislocations

Ghoniem, Tong, and Sun, Phys. Rev. B 61, 913 (2000);  
Wang, Ghoniem, Swaminarayan, and  LeSar, J. Comp. Phys.  219, 608 (2006)
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the plasticity which, in the case of crystalline materials is closely related to the 
dislocation dynamics. Thus, DD simulations can obviously feed CM models by 
calculating the constitutive equations. In CM, the maximum size of the simulated 
volume is not limited but instead imposed by the space resolution associated with 
the problem treated. However, each simulation cell must be big enough to be 
representative of a continuum medium in agreement with the constitutive equations. 

As introduced briefly above, MD, DD and CM have their own characteristic 
length and time scale. Figure 2.1 shows such ranges of length and time scales for 
each method. As the performance of each numerical method is improved, the 
volume and the physical time which can be simulated increase (top and right domain 
limits of each method in Figure 2.1). Recently the length and time scales of the three 
methods begin to overlap. This gives a great impetus to exchange information 
between the different models in order to build up a unified description of crystal 
plasticity, which would ideally be able to predict the behavior of a material from the 
fundamental properties of the atoms. 

2.2. Principle of Discrete Dislocation Dynamics 

The concept of 3D discrete dislocation simulations was imagined by L. Kubin, 
Y. Bréchet and G. Canova in the early 1990s [KUB 92], [DEV 92]. The first code 
Micromégas was a simple model for which dislocation lines of a f.c.c. single 
crystal are sub-divided into sets of edge and screw dislocation segments embedded 
in a continuum medium as pictured in Figure 2.2a.  

 

Figure 2.2. (a) Edge-screw discretization of dislocation lines;  
(b) internal stresses induced by edge and screw segments 

Each dislocation segment generates a long range elastic stress field within the 
entire simulated sample. In the case of isotropic elasticity, analytical expressions for 
the internal stress generated by a finite segment have been established by J.C.M. Li 
[LI 64] and R. DeWit [DeWIT 67]. Taking into account the anisotropy of the elastic 

methodologies fall into two classes

• discrete linear segments
- pure edge/pure screw (Kubin and company)
- mixed edge and screw (ParaDis, PARANOID)

• curvilinear dislocations
- parametric dislocations of Ghoniem 
- nodal points plus interpolation
- numerical integration along curves 
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 Step 1: parametric dislocations

  

Pi

   

Pi+1

   

Pi+2

• track the motion of 
the nodes

• remesh as needed

   
ri = 1− 3u2 + 2u3( ) Pi + 3u2 − 2u3( ) Pi+1

   + u − 2u2 + u3( ) Ti + −u2 + u3( ) Ti+1

Ghoniem, Tong, and Sun, Phys. Rev. B 61, 913 (2000);  
Wang, Ghoniem, Swaminarayan, and  LeSar, J. Comp. Phys.  219, 608 (2006)
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Step 2:  stresses and forces

basic method:  Wang, Ghoniem, Swaminarayan, and  LeSar, J. Comp. Phys.  219, 608 (2006)

   

F =


b ⋅σ( )× ξ̂

  
σ (a) = σ ext +σ defect +σ self + σ (ab )

b≠a
∑

force on dislocation 
calculated from stress:
Peach-Koehler Force

stress comes from many sources

   
R,ijk =

∂3 R
∂xi ∂x j ∂xk


1

R2

stress from an individual dislocation

   
σ ij =

µbn

8π
R,mpp ε jmnd i + ε imnd j( ) + 2

1−υ
ε kmn R,ijm −δ ijR,ppm( )d k

⎡

⎣
⎢

⎤

⎦
⎥∫

B

A

bB
R

dlB

rA
bA

rB

   
f (r )d→ wqf (rαq )

q=1

Nint

∑
α=1

Nsegment

∑∫evaluated numerically:
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Step 2:  stresses and forces

1
2

3 4 5
6

7 

r

[1]
[2] [3] [4] [5]

[6]

if use discrete linear 
segments

stress at point i from a segment 
from A to B is an analytic 
expression made up of more 
tensors

from stress can find the force.

below we will discuss how to 
calculate stress on nodes from 
stress on segments

A

B

i

see Hirth and Lothe, Theory of Dislocations
Devincre, Solid State Comm 93, 875 (1995)
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Two terms:

• core energy increases with length of dislocation so it  
opposes dislocation growth:  

• interaction of one part of a dislocation with itself

Step 2:  self stresses

  

b

 ξ̂

  
Ecore

L
= T = αµb2
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• full equation of motion (required at least at large   ):

• over-damped limit (ignore inertial effects):
• for force velocity: determine forces on the nodes and 

solve the equations of motion

•  time step limited by largest force

Step 4:  equations of motion and dynamics

“Dislocation motion in high-strain-rate deformation,”  Wang, Beyerlein, and LeSar,  
Phil. Mag. 87, 2263 (2007).

  m
a =

F − γ

v

   
v =

F / γ

 ε

   
r (t +δ t ) = r (t ) + v (t )δ t

Note:  as we shall discuss below, the forces and velocities 
of the nodes requires some attention.
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dislocation reactions
• treated with models
• ignore partials (more on this below)

coupling of dislocation motion to geometry
• we ignore the effects of lattice rotations caused by the 

dislocations
• many issues with boundary conditions, with the 

modeling of bulk plasticity being much more 
challenging than modeling of small-scale plasticity

Step 5:  some approximations
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Step 5: models
A Monte Carlo method is used to 
determine whether cross-slip is activated.

48

 (111) plane
 (111) plane

S
b

 [101]

Frank-Read sources, annihilation, and junction forming

annihilation

  

P = L
Lo

δ t
δ to

e
− V

kBT
τo−τCS( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ forτCS < τ o

P = 1 forτCS > τ o

Kubin LP et al.,  Scripta Mater. (1992)

cross slip:

junction

what else should we include:
e.g., climb, ...?
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• all atomistic-based processes described with models
• most codes ignore partial dislocations
• most materials are anisotropic not isotropic
• we ignore the effects of lattice rotations caused by the 

dislocations (except as a post-process)
• boundary conditions are a challenge, with the modeling 

of bulk plasticity being more challenging than modeling 
of small-scale plasticity

• we typically approximate long-range interactions
• ...

Summary of the approximations
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• choose initial conditions and stress
- place dislocations randomly on possible slip planes

• calculate total stresses on each node by integrating 
over all dislocations and find forces

• calculate if cross slip occurs
• solve equations of motion (nodes move)
• check for junctions, annihilations, etc.
• repeat

from movement of dislocations, calculate plastic strain

analyze dislocation structures, densities, etc.

steps in a simulation
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An example:
a simple Frank-Read Source
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DislocationDynamics.pdf also contains an explanation of 
this model.  A folder called DDFR in the folder “code”  
contains MATLAB code this model.
The goal is to simulate:

example:  a line-tension based Frank-Read 
source

Nota bene:  for a more complete discussion, 
see

Computer Simulations of Dislocations, V. V. 
Bulatov and W. Cai, (Oxford University Press, 
New York, 2006
and for more complete MATLAB codes, see
http://micro.stanford.edu/~caiwei/Forum/
2005-12-05-DDLab/
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We start with a dislocation 
pinned at both ends.  

This segment has         
                    and 
and is thus what kind of dislocation?

The glide plane is in the xy plane.  The forces in the glide 
plane are:

the model

x

y

 

b

 

ξ

 

b = b 0,1,0( ) ξ̂ = 1,0,0( )

 


F
L
=

b ⋅σ( )× ξ̂

 


F
L
= bσ yz −ξy ,ξx( ) = b τ −ξy ,ξx( )
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Add nodes to dislocation 
and connect with 
straight segments.

Force on segment i is constant along the segment:

Force on node i:  
• weighted average of force on segments
• for constant force on segments

Line tension force on i:  

•    is the line energy

representation of the dislocation and nodal 
forces

1
2

3 4 5
6

7 

r

[1]
[2] [3] [4] [5]

[6]

 

Fi
s = b τ −ξy ,ξx( ) i

 

Fi
 = E −ξ̂i−1 + ξ̂i( )

 

Fi =


Fi
s +

Fi+1
s( ) / 2

 E
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velocity of a node is dependent on velocity of the segment  
• each point on the segment has a different force, and 

thus different velocity (v = M F)
• as Bulatov and Cai describe, the velocity is a weighted 

average 
• they give an approximate expression, which we use

use Euler equation (or something better) for EOM

velocity

1
2

3 4 5
6

7 

r

[1]
[2] [3] [4] [5]

[6]

 

vi
n ≈


Fi
n

B  i−1 +  i( ) / 2
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• no interactions between segments
• no annihilation
• ...
However, it will show you how the basic method works.

And you can make movies.

limitations of model code
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operation of a source in a thin film

a better calculation of an FR source
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Applications
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1. Some successes:
small-scale

plasticity
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4 examples showing how changes in interfaces change 
plasticity:

• small scales with free surfaces (micropillars)1,2

• small scales with coated surfaces (micropillars)3

• polycrystalline thin films with free surfaces4

• polycrystalline thin films with coated surfaces5

1 Zhou, Biner and LeSar, Acta Mater. 58, 1565 (2010).
2 Zhou, Beyerlein and LeSar, Acta Mater. 59, 7673 (2011).
3 Zhou, Biner and LeSar, Scripta Mater. 63, 1096 (2010).           
4 Zhou and LeSar, Int. J. Plasticity 30-31, 185 (2012).
5 Zhou and LeSar, Comput. Mater. Sci. 54, 350 (2012).

dislocation dynamics simulations have proven 
very successful for small-scale systems

small scale plasticity is the perfect problem for DDD - small 
numbers of dislocations and straightforward boundary conditions
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 are the displacement and stress fields in an infinite medium from all dislocations. and 

 and  are the image fields that enforce the boundary conditions.

Total displacement and stress fields: 

free surfaces: boundary element method

61El-Awady, Biner,  and Ghoniem (2008)
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sample preparation (no ions required)

• initial conditions shown to have large effect of calculated response in 
small systems:  Motz, Weygand, Senger, Gumbsch, Acta Mater 57, 
1744 (2009).

Before relaxation
Density = 2.7×1013 m-2 

(Dotted lines are BEM meshes) 
D = 1.0, 0.75 and 0.5µm 
D : H = 1 : 2
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After relaxation
Density =1.8×1013 m-2 
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!
b 

stress-strain behavior of Ni
!

calculated

experimental

⎫
⎬
⎭

⎫
⎬
⎭

1 micron samples

1 micron samples

ρ

σ

onset of flow: 
ε ~ 0.008

onset of flow: 
ε ~ 0.003

differences 
arise from:  
strain rate, 
equation of 
motion, ...
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loading and flow

see “Scale free intermittent flow in crystal plasticity,” Dimiduk, 
Woodward, LeSar, and Uchic, Science 312, 1188 (2006). 

loading regime:  
intermittent flow, but 
are they avalanches?

loading

!!

flowloading

loading and flow

64



a simple model for a free-standing polycrystalline 
thin film

D

H

simulation cell

• free surfaces on all sides
• 9 grains, all with same 

orientation
• tension under constant strain 

rate
• all stress-strain-density 

behavior calculated from 
internal grain only, averaged 
over 10 realizations
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DD model of dislocation-grain boundary 
interactions

Simulation of dislocation penetration through a general low-angle grain boundary
B. Liu, P. Eisenlohr, F. Roters, D. Raabe, Acta Mater 60, 5380 (2012)

(a) twist annihilation of incident dislocation

X

Y
Z

Burgers vector [1 1 1] [1 1 1] [1 1 1] [1 1 1] 1 0 0
(b) after successful penetration from situation (a).

Fig. 6. Network penetration sequence of positive 1=2 ½111"ð1!10Þ incident
dislocation (on semitransparent glide plane). Vertical gray bar indicates
stress (full height = 1.5 GPa).

(a) direct annihilation of incident dislocation

X

Y
Z Burgers vector [1 1 1] [1 1 1] [1 1 1] [1 1 1] 1 0 0

(b) final network disintegration precedes penetration.
Fig. 7. Network penetration sequence of negative 1=2 ½111"ð1!10Þ incident
dislocation (on semitransparent glide plane). Vertical gray bar indicates
stress (full height = 1.5 GPa).

5388 B. Liu et al. / Acta Materialia 60 (2012) 5380–5390

dent and network dislocations. Strong interactions, such as
collinear annihilation or ternary junction formation, might
even prevent dislocation penetration altogether. Generally
speaking, the calculated penetration resistances are large
compared to experimental flow stress values of pure a-iron
[38–43]. This is particularly evident when it is considered that
the selected disorientation across the simulated LAGB is of
the order of only 0.3!. Penetration stresses r are expected [44]
to further increase with increasing disorientation (i.e.
decreasing dislocation spacing s in the LAGB) according
to the scaling relation r / ðs=bÞ#1 lnðs=bÞ. The stress
required locally in order for incident dislocations to pene-
trate (idealized) LAGBs up to a few degrees of disorientation
thus ranges from small fractions of a GPa to some GPa as
illustrated in Fig. 8. It is likely that this magnitude is inde-
pendent of temperature, since the contribution of thermal
activation to breaking the governing junctions is expected
to be very small [42]. Therefore, as viewed from the perspec-
tive of a LAGB, the population of incident dislocations
ranges from penetrating to getting stuck. From the opposite
perspective, an incident dislocation experiences the LAGB
population as ranging from transparent to not transparent.
Comparing the transmission resistances in Table 4, this dis-
parity can even occur for the same dislocation type but oppo-
site line sense when approaching a given boundary.

Based on these findings and consistent with a number of
experimental observations, low-angle grain boundaries have
to be considered as major obstacles to homogeneous disloca-
tion slip. The (temporary) holding up of dislocations travel-
ing from one subgrain to a neighboring subgrain causes a
plastic incompatibility between them that naturally gives rise
to a heterogeneous field of internal stress [45,46].

This stress field would be expected to be highest close to
the boundary and decaying towards the subgrain interior.
Bulk measurements based on X-ray diffraction and conver-
gent beam electron diffraction support this view (e.g. [47–
49]). The direct observation of frozen-in radii of bowed-
out dislocations in Al–5 wt.% Zn right at LAGBs indicates

that local stress values indeed exceed the applied stress by
about an order of magnitude [50,51]. The strengthening
contribution of LAGBs is also responsible for the primary
transient during creep. During this transient, the disloca-
tion density in the subgrain interior remains essentially
constant [52]. On the other hand, a continuing build up
of the subgrain structure and a gradually increasing LAGB
disorientation is still observed (e.g. [53–55]) and result in
the increase of deformation resistance. Recently, Mekala
et al. [56] compared the transients of creep rate in response
to sudden stress drops carried out in the primary transient
and in steady state.3 They observed the transient strain
required to recover the deformation resistance to increase
along the primary transient, thus confirming the link
between deformation resistance and (i) area per volume
of LAGBs plus (ii) their internal densification.

LAGBs, on the other hand, cannot be completely non-
transparent to slip transmission. The direct experimental
observations of slip lines extending over more than one dis-
location cell [58] and in situ crossing through subgrain
boundaries [59] confirm the partial transparency of LAGBs.

Possible scenarios to enable the penetration of incident
dislocations at the low end of transmission resistances
could be: (i) local increase of stress resulting from a pile-
up of dislocations ejected from the same source; (ii) activa-
tion of dislocation sources in the neighboring subgrain
upon reaching their critical stress due to either a similar
pile-up or generally increasing plastic incompatibility
between both subgrains; (iii) extraction of dislocations
from LAGBs resulting from strong fluctuations in the local
stress during boundary migration [60]; or (iv) variations in
mesh size resulting from the continuous dislocation inci-
dence during (homogeneous) straining, opening up local
“holes” in the LAGB.

5. Concluding remarks

We investigated the strengthening ability and disloca-
tion processes associated with a general LAGB simplified
as a hexagonal network of dislocations with three Burgers
vectors using DDD simulations.

The LAGB poses a major obstacle to dislocation pene-
tration with a wide range of resistances being found to
depend on the slip system and line sense of the incident dis-
location as well as on the mobility of h10 0i dislocation seg-
ments in the network. These resistances are directly related
to the strength of junctions formed between incident and
network dislocations—consistent with the established
sequence of increasing strength from binary junctions as
the weakest, to ternary junctions, to collinear as the stron-
gest interaction. The latter two reactions might render a
boundary impenetrable.

sin-1 (b/s) / degree

s/b

σ  
/ G

Pa

0.1

1

10
1

101 102 103

0.1

th
is

 L
A

G
Bstrong reactions

weak reactions

Fig. 8. Estimated dependence of LAGB penetration resistance
r / ðs=bÞ#1 lnðs=bÞ on network mesh size s based on penetration strength
levels observed at s=b ¼ 200 in this study.

3 Defining “steady state” is not without ambiguity (see [57]). Here,
approximate constancy of the subgrain size, i.e. LAGB area per volume, is
meant.

B. Liu et al. / Acta Materialia 60 (2012) 5380–5390 5389

• low angle GB (0.3°) modeled with 
interpenetrating mesh of dislocations

• modeled transmission of dislocations 
through the LAGB

• atomistic simulations are also 
being done, but each 
orientation and dislocation are 
different
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transmission model at grain boundaries

GB

Incoming	
  dislocation,	
  b1

Outgoing	
  dislocation,	
  b2

Residual	
  dislocation,	
  ∆b

Grain	
  2

Grain	
  1

grain boundary/dislocation interactions (de Koning et al. 
2002)

transmission stress adjusted 
to match experimental 
stress-strain relation
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setting transmission stress: τGB

τGB = 5 τFR

data by Xiang et al (2006)
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comparison with experiment
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Reciprocal of film thickness, 1/H (µm-1)
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 D = 250 nm    D = 500 nm
 D = 1000 nm  D = 1500 nm
 Cu freestanding (Gruber et.al.) 
 Cu freestanding (Xiang et.al.) Excellent agreement 

with experimental 
stress-strain behavior, 
but ...

is this a definitive test 
of the method?
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dislocation structures

D = 500 nm

H = 250 nm H = 500 nm

H = 2 µm
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dependence 
on D and H
• dependence of yield 

stress on D as a 
function of film 
thickness 

• approaches Hall-Petch 
relation for thick films      
(H = 1.5 µm)
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• for small-scale samples, DD simulations have led the 
way in developing understanding of the deformation 
mechanisms

• by controlling physics, we can examine the role of 
different physical processes (e.g., cross slip) 

• limited by the assumptions mentioned earlier
• with better connection to experiments (esp. structure), 

we should be able to examine the “correctness” of the 
predictions, which can guide the development of better 
models

outlook
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A challenge: bulk 
plasticity
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2.  Can we model with DD the development of 
dislocation substructures?

Szekely, Groma, Lendvai, Mat. Sci. Engin. A 324, 179 (2002)

1 µm

Single crystal Cu in single slip: Stage III

we will use as an example 
a study of high strain rate 
response done in 
collaboration with Los 
Alamos
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the dislocation density increases with stress
• calculations slow with increasing stress, with the 

computational time per time step increasing as 

time steps decrease with increasing dislocation density
• typically use dynamic time stepping because of very 

large dislocation interaction stresses (based on a 
maximum distance a dislocation can move)

• time steps are small (can be as small as 10-10 sec)
• as density increases, have more pileups and larger 

stresses and thus smaller time steps: 

computational challenges

 ρ
1/2 ∝τ

  nnode ∝ L ∝ ρ ∝τ 2
  tcomp ∝ nnode

2 ∝τ 4

   δ t  1/ τ
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• must have transport of dislocations into and out of the 
simulation cell

• periodic boundary conditions can be a problem. 
- Madec, Devincre and Kubin, “On the use of periodic boundary 

conditions in dislocation dynamics simulations”, Solid Mechanics 
and Its Applications 115, 35-44 (2004)

• can avoid many of these issues with large cells (slow 
calculations), but still have long-ranged interactions

• may be best to use large cylinders whose properties 
seem to be bulk-like

boundary conditions
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Frank-Read 
source

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

b

periodic boundary conditions
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!

a 
assume an initial set of Frank-Read 
sources randomly placed on 
available slip systems

under stress, they bow out
and interact with other 
dislocations

as the length of dislocations 
increases, so does the
complexity of the microstructure

a typical initial structure

5 µm cube
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effects of loading 
on dislocation 
microstructures 
and deformation

Schmid factors: 

interest in high 
rates: e.g., 
impact damage

studies at high strain rate on Cu single crystals

“Plastic anisotropy in fcc single crystals in high rate deformation,” 
Wang, Beyerlein, and LeSar, IJP 25, 26-48 (2009)

 [111] < [211] < [100]

5 µm cubes
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slip bands in [111] loading

“Plastic anisotropy in fcc single crystals in high rate deformation,” 
Wang, Beyerlein, and LeSar, IJP 25, 26-48 (2009)

viewed along [100] viewed along [110]

Is this an artifact of the boundary conditions?
5 µm cube
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dislocation density on           slip planes
A

B

 111⎡⎣ ⎤⎦

• slip bands are 
approximately 0.2 µm 
wide

• band spacing varies 
between 0.1-1 µm

• spacing between fine 
bands within bands is 
0.01 µm

  106 s−1
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   ε = 104 s−1    ε = 105 s−1

  106 s−1

without cross slip

  ε p = 0.15%
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• high-rate behavior differs from that at low rates, which is 
controlled by obstacles and thermal activation

• essentially all dislocations are glissile
• slip bands act as “deformation highways”:  processes in slip-

band formation are the dominant deformation mechanisms

hardening

 ε = εe + εP εP

82
What is the effect of the boundary conditions?
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3. stage II hardening by DD simulations
Kubin et al. used DD to examine the hardening rate based on 
calculating the mean free path of the dislocations along various 
slip planes (replacing dependence on experiment in Kocks 
model), assuming uniform densities per slip system.

Application to various metals at 
room temperature:

Kubin, Devincre, and Hoc, Intl. J. 
Mater. Res. (2009).
Devincre, Hoc, Kubin, Science 320, 
1745 (2008)

aij by their average value a. During a time interval
dt, mobile dislocations in i sweep an area dSi and
produce a strain increment dgi = bdSi per unit of
volume. The increase in stored density dri is the
product of the number of stable junctions formed
during a time increment and the dislocation den-
sity stored per junction.

The number of stable junctions formed during
dt is the product of two terms. The first one is the
number of intersections, dNint, of mobile dislo-
cations with the forest dislocations of i, in density
rif (where f refers to the forest). This quantity is
proportional to rif and to the swept area; hence,
dNint ¼ rif dg=b. The second term incorporates
the fact that not all intersections produce stable
junctions (Fig. 1A). Because the stability of a
junction is proportional to the average strength of
the forest interactions (5), it is written in the form
p0

ffiffiffi

a
p

, where p0 is a constant.
The density stored by each junction is given

by ‘
i
=V, where ‘

i
is the average length of the

stored segments. As usual in dislocation theory,
this length is inversely proportional to stress, and
one has ‘

i ¼ k0mb=tic, where k0 is a dimen-
sionless constant. However, one has to account
for the contribution of junctions to the average
lengths. Although junction lines do not neces-
sarily share the attributes of perfect dislocations,
they are redistributed into the densities stored in
the active slip systems. This way, they can further
react with mobile segments to form second-order
junctions (6). As a result, one defines a last con-
stant parameter, the ratio of junction density to
total density in each slip system, k.

Collecting all terms, one eventually obtains
the storage rate per active slip system or, equiv-
alently, the inverse of the mean free path (Eq. 1).
The latter takes a relatively simple form in the
case of loading along symmetrical orientations
like [001], [111], or [112] when n active slip
systems (n = 4, 3, and 2, respectively) equally
contribute to the total strain. One then has

1
Li

¼ tic
mbKhkl

, with

Khkl ¼
nð1þ kÞ3=2

p0k0
ffiffiffi

a
p

ðn − 1 − kÞ

" #

ð2Þ

This mean free path exhibits interesting prop-
erties that are also present in more general con-
ditions. From Eq. 2, one can see that it is
inversely proportional to the Taylor stress. It is
also proportional to an orientation-dependent
coefficient Khkl, which depends on the three
dimensionless constants (p0, k0, and k) and also
on the number n of active slip systems. In short,
as n increases, the forest density seen by each
active slip system increases too, and the mean
free path decreases. Because n depends on the
orientation [h,k,l] of the loading axis, an orien-
tation dependence of the mean free path arises,
which was not consistently modeled to date.

The constants defining the mean free paths
were evaluated from two sets of independent DD
simulations carried out with copper as a model ma-
terial (4): (i) model simulations, in which a mobile
slip system interacts with an immobile forest slip

system, and (ii) large-scale simulations of tensile
deformation tests along three symmetrical axes,
[112], [111], and [001]. Figure 2 illustrates the de-
termination of the constants p0, k0, and k by large-
scale simulations. Table 1 gives average values
for the constants in Eq. 2, as obtained from the
two sets of DD simulations. The values of the
mean free path coefficients, Khkl, can then be
compared to the ones predicted by Eq. 2.

From the values of p0 and k, one can infer
that the fraction of attractive intersections that
result in junction formation is ~25%, whereas
the average density of junctions is ~30% of the
total density in symmetrical conditions. The sim-
ulated and calculated values for K112 and K111 are
in good agreement with one another. The differ-
ence between the values for K001 actually results
from a particular dislocation mechanism that is
specific to the [001] orientation (14). We used
the measured value of K001 to correct the pre-
diction of the model in that case.

Storage by forest interactions and Taylor hard-
ening constitutes the two major building blocks
for modeling strain hardening. Other building
blocks are discussed in the supporting online ma-
terial text. They are essentially concerned with
self-interaction mechanisms, which govern strain
hardening in single slip conditions (14), and dy-
namic recovery, which is related to the thermally
activated annihilation of screw dislocations by
cross-slip. Because the annihilation distance y in
Eq. 1 incorporates two poorly known factors, a
reference value was estimated from an experi-
mental stress/strain curve.

To allow for a comparison between the pre-
dicted and experimental mechanical responses of
single crystals, a change in scale is performed from
mesoscopic to macroscopic dimensions. For this
purpose, use is made of a crystal plasticity code
(4, 15), which is a specific type of finite element
code that takes into account the crystallographic
nature of dislocation glide, deformation conditions,
and lattice rotations during plastic flow. We then
integrated the set of dislocation-based equations
on a meshed tensile specimen (fig. S1).

Table 1. Average values of the dimensionless constants for fcc crystals involved in Eq. 2 and their
variance. The number of independent measurements is indicated in parentheses in the top row. The
values of the mean free path coefficients Khkl can be compared to the ones calculated from Eq. 2
(italic numbers in parentheses). For a resolved shear stress of 10 MPa in copper, these values are
almost identical to those of the mean free paths expressed in microns.

p0 (6) k0 (6) k (9) K112 (3) K111 (3) K001 (3)
0.117 ± 0.012 1.08 ± 0.005 0.291 ± 0.015 10.42 ± 0.4

(11.87)
7.29 ± 1.6
(7.38)

4.57 ± 0.3
(6.21)

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8

[001][111]
[112]

[123]

I

II

III

A

γ t γ t γ t

 (M
P

a)
τ  (M

P
a)

τ
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8

γ

log[  (m
-2)]

8

10

12

14
ρp

ρs

γ p

γ s

B

ρ

 0

 20

 40

 60

 80

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
Ni

Cu

Ag

Al

Fig. 3. Simulated mechanical response of fcc single crystals at room tem-
perature. t and total strains (gt) were drawn using traditional conventions for
plotting experimental results. (A) Copper. Stress/strain curves were resolved on
the primary slip system. Notice the strong orientation effect and the occurrence
of three stages for the low-symmetry [123] orientation. The strain hardening
rate increases from dissymmetrical double slip along [123] to symmetrical slip
along [112], [111], and [001]; i.e., it increases with an increasing number of

active slip systems. The crossing of the [001] and [111] curves was exper-
imentally observed. This crossing occurs because of a competition between the
orientation dependencies of stages II and III. (B) Copper, [123] orientation.
Densities (r) and resolved strains (g) on the primary (p) and secondary (s) slip
systems as a function of the total resolved strain, showing the transition between
easy glide in stage I and forest hardening in stage II. (C) Resolved stress versus
total shear strain curves for [123] Cu, Al, Ag, and Ni crystals at room temperature.
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• they obtain qualitative, but not 
quantitative agreement with 
experiment.

• in many ways a 2D model 
(mean free path on different slip 
systems)
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Model not essentially different from the 
2D phase-field modeling of  Koslowski et 
al., PRL 93, 265503 (2004)
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stage II:  their conclusions
1. they have not solved stage II, though they made 

progress

2. they believe that it is possible

3. they cannot predict the transition between stages

“There is presently no generally accepted theory explaining 
how and why organized dislocation microstructures 
emerge during plastic flow.” Kubin, Devincre, and Hoc, Intl. 
J. Mater. Res. (2009).
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IV.  some more examples
• strain hardening: e.g., Kubin and coworkers mapped out 

aspects of Stage II strain hardening in fcc crystals, Devincre, Hoc, 
and Kubin, Science 320, 1745 (2008); Kubin, Devincre, and 
Thierry, Intern. J. Mater. Res. 100, 1411 (2009).

• fatigue:  Fivel and coworkers applied 3D dislocation simulations 
to the early stages of fatigue, with applications to fatigue in: steel 
[Déprés, Robertson, and Fivel, Phil. Mag. 84, 2257 (2004); ibid. 
86, 79 (2006)], fcc materials [Déprés, Fivel, and Tabourot, Scripta 
Mater. 58, 1086 (2008)], and precipitation hardened materials 
[Shin, Robertson, and Fivel, Phil. Mag. 87, 3657 (2007)]

• silicon:  see work from K. W. Schwarz, for example, with 
PARANOID code

• Others of note:  Weygand/Gumbsch/... : many calculations, 
including small-scale plasticity
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Outlook and 
needs
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• all atomistic-based processes described with models
• most codes ignore partial dislocations
• interactions are long-ranged
• most materials are anisotropic not isotropic
• we ignore the effects of lattice rotations caused by the 

dislocations (except as a post-process)
• boundary conditions are a challenge, with the modeling 

of bulk plasticity being much more challenging than 
modeling of small-scale plasticity

• ...

Summary of some of the approximations

• we need more sensitive tests to tell us what is and is not 
important. Structures matter so microscopy is key.
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• Simulations are limited by: size, boundary conditions, and 
all the approximations mentioned above.

• Limited success for DD in modeling dislocation 
substructure development.

• Thus, prediction of hardening has not been possible.
• “The present dislocation-based models for strain 

hardening still have difficulties integrating elementary 
dislocation properties into a continuum description of bulk 
crystals or polycrystals. As a consequence, current 
approaches cannot avoid making use of extensive 
parameter fitting.” - Devincre, Hoc, Kubin, Science 2008.

Outlook for calculating bulk mechanical 
properties
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Needs

• Better connection to experiment:  “The feedback loop 
between theory, simulation and experiment for plasticity 
and property modeling,” T. M. Pollock and R. LeSar, 
Current Opinion in Solid State and Material Sciences 17, 
10-18 (2013).

• As noted above, we need to link to experimentally 
measured dislocation substructures

• We will do this in collaboration with Marc DeGraef, using 
methods he discussed Monday

• With better connection to experiments (esp. structure), we 
should be able to examine the “correctness” of the 
predictions, which can guide the development of better 
models.  
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(S)TEM Defect Simulations

dS(z)

dz
= iA(r)S(z) S(✏) = eiA✏S(0) = S(✏)S(0)

Reformulate as a matrix problem: Scattering matrix

Propagation = scattering matrix product

S(z) = S(zm)S(zm�1) · · · S(z2)S(z1)S(0)

↵g(r) ⌘ 2⇡g ·
NdX

i=1

Ri(r) = 2⇡g ·Rt(r)

dSg(z)

dz
= 2⇡isgSg(z) + i⇡

X

g0

0 e�i↵g�g0 (r)

qg�g0
Sg0(z)

Darwin-Howie-Whelan equations:

1

qg
⌘ 1

⇠g
+ i

ei(✓
0
g�✓g)

⇠0g

Extinction distance Absorption length

Displacement field

From:
Marc De Graef
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g020

bright field dark field

fcc-Al, 200 keV
100 nm foil, “slightly bent”
6 perfect dislocations, 3 stacking faults
50 spherical voids, 50 spherical inclusions
(020) systematic row, 9 beams

Example
parallel illumination

From:
Marc De Graef
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• calculation of the displacements

• Complication:  Ω is discontinuous in dislocation plane.

• From displacements, we will calculate the expected STEM 
signal, enabling us to better compare with data.

Calculated (S)TEM results

   
ui


R( ) = −

biΩ
4π

+ 1
8π

ε iklblR,pp +
1

1−ν( ) ε kmnbnR,mi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
d ′ k∫

  
R,ij =

∂2 R
∂Xi ∂X j

   
f (r )d→ wqf (rαq )

q=1

Nint

∑
α=1

Nsegment

∑∫
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