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modeling talks at the Summer School

Week 1 - Aug 19 -23

Date

9:00 am — 10:30am

11:00am — 12:30pm

2:00pm —3:30 pm

3:30 pm —5:00pm

Mon Aug 19"

Marc De Graef

Peter Voorhees

Emmanuelle Marquis
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(1001 ESB Patio)

Tues Aug 20"

Matt Miller Stuart Wright Mike Jackson McLean Echlin
Wed Aug 21° Poster Sess
=e e Mike Mills Satoshi Hata Richard LeSar 05ter Session

(1001 ESB Patio)

Thurs Aug 22" . Dave Rowenhorst Joann Kuchera-Morin
Samantha Daly Dan Gianola :
Matt Wright
. rd
Fri Aug 23 Yunzhi Wang Marc DeGraef Open Demo Session Free Time
Week 2 — Aug 26 — 30
Date 9:00 am - 10:30am 11:00am - 12:30pm 2:00pm - 3:30 pm 3:30 pm = 5:00pm
Mon fue 2o monPhipot  [|  Watcpegley 1003 €S8 P
Simon Philpot Matt Begley Michelle Johannes (1001 ESB Patio)
Tues Aug 27th Simon Philpot Mike Uchic Frederic Gibou TBA
Wed Aug 28th Michelle Johannes Anton Van der Ven TBA
Thurs Aug 23th Jianwei (John) Miao Jianwei (John) Miao Anton Van der Ven TBA
Fri Aug 30"

James Rondinelli James Rondinelli

Barbecue at Goleta Beach

DFT/atomistics

mesoscale




Definitions: modeling and simulation

A model is an idealization of real behavior, I.e., an

approximate description based on empirical and/or
physical reasoning.

A simulation is a study of the dynamical response of a
modeled system found by subjecting models to inputs
and constraints that simulate real events.

A simulation does not mimic reality, rather it mimics a
model of reality.



modeling and simulation

The accuracy of a simulation depends on many factors,
some involving the simulation method itself (accuracy in
solving sets of equations, for example).

Often, however, the biggest errors in a simulation, as
least with respect to how well it describes a real system,
are the inadequacies of the models upon which the
simulation is based.

Thus, one cannot separate simulations from the
underlying models.



How do we create models?

Useful article by Mike Ashby
(Materials Science and

Technology 8, 102 (1992))

Discusses a systematic
orocedure that one can follow to

oroduce models.

Many models would have lbeen
improved if this process had
been followed.

Think before you compute!

|dentify the
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Construct the
Model
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Develop the
Computer Code
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Simulate with
the Model
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Use the
Results




scales of deformation

Table 1 Length scales and timescales used to describe the mechanics of materials, as adapted from
Reference 92

Unit Length scale Timescale Mechanics

Complex structure 10°m 10%s Structural mechanics
Simple structure 10'm 103s Fracture mechanics
Component 10! m 100s Continuum mechanics

Atomic 10~ m 10-12s Molecular dynamics

FElectron orbitals 101 m 101 s Quantum mechanics

we typically have methods and models for individual scales of
behavior - the coupling across scales is referred to as multiscale

based on Ashby, Physical modelling of materials problems. Mater. Sci. Tech. 8, 102-111 (1992).



. experiments



strain hardening in single fcc crystals

Mughrabi, Phil. Mag. 23, 869 (1971)

! .~__ : '., ) .‘, '_.- ‘ = ¥ ‘_‘.'.‘ ; 1 “’ v
Il Szekely, Groma, Lendvai, Mat. Sci.
\ Engin.A 324, 179 (2002)

Stress

Slope ~ p/200 e 5

despite 80 years

Slope ~ p/10000

of dislocations, Elastic (slope ~ |

we have no good |
theories for this Strain pm
fundamental single crystal under single slip

structure- U is the shear modulus

property relation

TayIOr IaW. p oc T Mughrabi, Phil. Mag. 23,869 (1971)



Engineering Stress (MPa)

pure Ni at small scales
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strong size effects,
stochastic variation,
INntermittent flow, stresses
sufficient to activate most
slip systems.

Dimiduk, Uchic, and coworkers (many papers,
including Science 2004).
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Diffraction Contrast STEM Tilt Series

courtesy of Mike Mills

-

0.6 um Thick
Mo fiber

J. Kwon (OSU)

EFRC Center for Defect
Physics (DOE-BES)

10



. Plasticity



edge dislocations

the Burgers vector b is a 1934
measure of the displacement of |
the lattice . (Taylor, Polanvyi,
L . Orowan)
distortion of lattice leads to :
Strain field and, thus, a stress o X
blé&
—> —> —> —>
é movement of an
___________________________________ 888 38886 edge dislocation
% % % note the deformation that
«— «— «—

arises from the movement
% % of the dislocation
— —_

% % annihilation
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the Burgers vector is constant for

O

n O\O\mu\mvlo

m O,OI.”.?IIMA?CJ
S —
B TO,./.IO

o o—o—e-

screw dislocations
mixed dislocations
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stress
—_—

d D Xi

plastic strain _¢ , A

) o
stress b

N
macroscopic displacement: p — Ez X
o i

plastic strain:

D b N
E =—=—) X.=b—(X
P h dh,-g‘ ’ a’h< >

€, = bp<x>

o = dislocation density = m/m° = 1/m?

Hull and Bacon, Introduction to Dislocations (2001)
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plasticity

O
total strain: € =¢&° +&°
ki Kl ki
Oapp
stress/strain:
— e __ _ oP
Gij = Cijk/gk/ = Cijk/ (8k/ EKI) not to scale
for an applied stress of o: cp g€ e

elastic strain from: O©. = Cijklgkl

. . _ b &
plastic strain from: o _ in goal of simulations:

calculate plastic strain
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dislocation generation and motion

dislocations primarily move on slip (glide) planes:

bowing from pinned sites

dislocations “grow”

Frank-Read source

serves to generate
new dislocations

bowing around obstacles

basis for first dislocation
simulation by Foreman
and Makin (1967)

16



dislocation processes that move edges off
their slip plane

out of plane motion (activated processes):
[101]

) (111) plane cross slip:
171) pl - -
(117) plang . screw dislocation can move off
~b slip plane

stress and temperature
activated

....... 4{ Y- m—p oL i o climb:
% % a diffusive process

17



. Simulations

18



scales of deformation

Table 1 Length scales and timescales used to describe the mechanics of materials, as adapted from

Reference 92

Unit Length scale Timescale Mechanics

Complex structure 10°m 10%s Structural mechanics
Simple structure 101 m 103s Fracture mechanics
Component 10! m 100s Continuum mechanics
Grain microstructure 10 m 10~ s Crystal plasticity
Dislocation microstructure 10~ m 106s Micromechanics
Single dislocation 10~ m 10s Dislocation dynamics
Atomic 10~ m 10-12s Molecular dynamics
Electron orbitals 101 m 101 s Quantum mechanics

What computational methods we use depends on what our
questions are and the limitations of the methods.

We start by identifying the “entities” in the model.

based on Ashby, Physical modelling of materials problems. Mater. Sci. Tech. 8, 102-111 (1992).
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“density functional theory” (DFT)

entities

electrons
solve Schrodinger’s equation: HY(7,7,,....7 )= E¥Y(F ,7,,....7, )
too hard to solve directly, so make numerous approximations

approximations and limitations

convert N-electron problem to N 1-electron problems and solve
those for p and find the electron density, p (the Kohn-Sham method)

solve equations self-consistently in potential field arising from p
use approximate functionals (Exc) for potential field (LDA/GGA/...)
limited (generally) to 1000s of atoms

good for dislocation core structures and small numbers of
dislocations

20



molecular dynamics

entities
e atoms

e forceonanatomis: F=-VU
d2_>

* solve Newton’s equations: a. =m,

= fm

-1

U=3, i 8, (7,

i=i j=i+l

* need description of U

approximations and limitations

e potentials are analytic expressions with parameters fit to experiment
and/or DFT (e.g., LJ, EAM)

e reasonably good potentials are available for many systems, but great
potentials are not available for almost anything

* |imited (generally) to 100s of millions of atoms

e time scales: typically nanoseconds

21



limitations of atomistics

Modeling deformation on the scale of dislocation microstructures
cannot be done at an atomistic scale:

* 1 um3 of copper includes approximately 1011 atoms
e time stepsin MD: ~107"° sec
- MD Ilimited to a few hundred million atoms for a nanoseconds

e atomistic simulations can describe processes that include only
small numbers of dislocations at fast rates

atomistic simulation of dislocations
showing stacking fault planes between
partials

courtesy of T. German, Los Alamos
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modeling at the mesoscale

There are numerous methods used at the mesoscale,
some force based and some energy based.

For force-based methods, one must
e define the “entities”
¢ Jdetermine the forces
e define the dynamics
e solve the equations of motion

These methods have similarities to molecular dynamics,
but the entities are collective variables not atoms or
molecules

23



entities

e |n DFT and MD, the entities were clear: electrons
and atoms.

e At the mesoscale, entities could be defects, such as
dislocations or grain boundaries, or some other
variables that define the physics of interest.

e [hese entities are collective variables, in which the
actions of many smaller-scale entities are treated as
one.

e \We will often have flexibility in the choice of the entity,
e.g., the many ways to model grain boundaries

e Most successful modeling is for cases in which there
IS a clear separation into collective variables



damped dynamics

Most applications of dynamical simulations at the
mesoscale involve systems with damping, I.e., there
are forces that dissipate the energy.
2 —
14 —

Standard equation of motion:  m, y +=F
t

Force due to friction is usually velocity dependent:  F* = —y5;

l

Vv Is the “damping coefficient”

Net equation of motion is:  m,—~=F, —y¥



solution in 1D

d’x
mW:F—}/V

For constant £ (i.e., no variation with x), the solution is:

For large damping
(large y), we often
ignore the Inertial
effects and assume:

F
v=—=MF

Y
this Is called the over

damped IImit

26



mesoscale simulations of dislocations

model the behavior of only the dislocations by treating
them as the entities tracked in the simulation

three main approaches
- force based (discrete dislocation dynamics)
- energy based (phase field)

- continuum methods (a “density-functional theory” - see
recent work by Sanfeld, Hochrainer, Gumbsch, Zaiser, ...)

today we discuss discrete dislocation dynamics

on Friday, Professor Yunzhi Wang will discuss a phase-field
approach

27



phase-field and discrete dislocation dynamics

e phase-field dislocations
- free-energy-based
- Ginzburg-Landau dynamics

- advantages: links naturally to other phase-field methods,
“easy” to include energy-based phenomena (e.qg.,
partials)

e dislocation dynamics
- force-based
- dynamics from equations of motion

- advantages: accurate dynamics (inertial effects), stress-
driven processes (cross slip)

e the output of both methods are similar
- dislocation sulbstructure evolution in response to a load

28



outline

e simple 2D model
e pasics of 3D simulations

e ecxamples:
1. small scale plasticity
2. bulk plasticity
3. strain hardening

e what is wrong with the simulations?

® connection to experiments

All simulations discussed today are based on isotropic elasticity -
iIncluding anisotropy Is not difficult, just very time consuming

29



discrete dislocation simulations in 2D

e e start with a simple 2D model that consists of parallel
edge dislocations

e first "modern” dislocation dynamics simulations were
based on this model (Lepinoux and Kubin, 1987; Amodeo
and Ghoniem, 1988; Gulluoglu et al, 1989)

e such simulations require (a partial list):
1. representation of dislocations in space
2. description of interactions (forces)
3. boundary conditions
4. description of dynamics

30



Step 1: Simulation of system of straight edge
dislocations: represent as points in 2D

Assume all dislocations have: b =bx and & =72

on any Xy plane:

ooooooooooooooooooooooooooooo

at low T, no climb and dislocations can only move on their
slip planes

This model is sometimes referred to as 2.5 D.

31



Step 2a: Interactions between dislocations

Assume: b =b3 and & = 2 e i

== =
NN N
AN N
] A\ W N
< R / %

_mpy x(xoy) RS
- 2 f
27 (1-0) (x2+y2) | {

Stress from dislocation:

0, (/)

=

2

/
<R
N
B

Force from this dislocation on L R N\
another dislocation: Peach-Koehler force
17(1) . n G11 012 013
= (bl G(])) X 51 O = | Oy O O3
L 631 0632 033

- 27(1-v) X2+ y;)z NOTE: long ranged
(~1/r)



Step 2b. External stress

Let T be the applied shear stress: ¢ =07

. . o Fext i
The force from external stress on dislocation 1is: == ( )

Note: Burger’s vector has sign:
e cither +b or -b
e stress drives +/- dislocations in opposite directions

Net force (assuming N other dislocations)

( P x, (x5 = ;)
T+J§12ﬂ: 1—- U) (x;+y;)2

33



Step 3. Boundary conditions

Put N dislocations at random positions in a 2D periodic
square grid with size D with equal numbers of +b and -b

dislocations

Dislocation density is p=N /D’

(all important distances in this system will scale as 1/ p"*)

We will look at truncations of dislocation interactions:
1. short-range cutoft
2. NO cutoff

34



Step 4. Dynamics

Assume overdamped dynamics: v(r)= M FXL(t )

Assume a simple Euler equation solution:

x(t+0t)=x,(t)+v,(t)0t

For no external stress, run the system until converged.

Then apply an external stress, calculate change in
dislocation position, and calculate

b & N
Ae | = FZAXI. = bF<Ax> = bp(Ax)

35



Results: truncated potential

Not quite converged (t=0)

At converged solution:
straight lines alternating
+ and - dislocations with
spacing 1/2 the cutoff
distance

L T

rT Ay Ly dyg

*nlliif*T * T

i

FFT li‘ﬁfi TTTT d
¥ N LTTT@

Y S I
& I |
N1 (O

[
|
- |

- W
'—

4

~ = -
. " 4+ 1T
-
A0S i To S e e s

%«

“Dislocation distributions in two dimensions,” A. N. Gulluoglu, D. J. Srolovitz,
R. LeSar, P. S. Lomdahl, Scripta Metallurgica 23, 1347-1352 (1989).
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Results: all interactions to infinity
hted pair correlation function

sign-weig

0.50

T
} 3 ,ff;- : t LT J_E,i -0.25

Y 4
Tt n ¥ ITNE, T a
L T 1 L
'& L :’%'J_*T_LJI' #% . * # .&.if
iu,j; i v g +h " Td 0.50

T T ' -0.50

shows importance of knowing how to carry out the simulation!

“Dislocation distributions in two dimensions,” A. N. Gulluoglu, D. J. Srolovitz,
R. LeSar, P. S. Lomdahl, Scripta Metallurgica 23, 1347-1352 (1989).

'h_ R

0.2¢

0.1¢

0.0!
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Your assignment ...

We will email you a zipped folder called LeSarDD.zip.

In this folder is a file (DislocationDynamics.pdf) that
contains a description of how to implement (in
MATLAB) the 2D modeling | just described.

DislocationDynamics.pdf also contains some exercises
to consider.

There Is also a folder called code that contains 2 other
folders. The one called DD2D contains MATLAB code

for this problem.

38



2D models show interesting behavior, but ...

e many interesting simulations have been done with these
2D (2.5 D) models

¢ Alan Needleman and Erik van der Giessen in particular
have done very nice work, including coupling to
continuum models

e However, dislocation plasticity is 3D

e Michael Zaiser (Erlangen) once
describe these 2D simulations as
“cubist” representations of plasticity

La Femme Au Miroir
Fernand Leger, 1920

39



discrete dislocation simulations in 3D

iInclude dislocations moving along all active slip planes to
examine evolution and response

pioneering simulations by Kubin (early 90s). Many groups
doing lovely work: Kubin and “offspring” (Devincre,
Madec, Fivel, ...), Bulatov, Cai, Weygand, Gumlbsch,
Schwarz, Ghoniem, Wang, El-Awady, Zhou, ...

such simulations require (a partial list):

1. representation of dislocations in space
2. description of interactions (forces)

3. boundary conditions

4. description of dynamics

5. approximations, models, etc.

40



Step 1: approaches to representing dislocations

methodologies fall into two classes

e discrete linear segments
- pure edge/pure screw (Kubin and company)
- mixed edge and screw (ParaDis, PARANOID)

!f.'-"
\W

Segment i

~_ Do
F(u)
0
e curvilinear dislocations
- parametric dislocations of Ghoniem
- nodal points plus interpolation

- numerical integration along curves

Ghoniem, Tong, and Sun, Phys. Rev. B 61, 913 (2000);
Wang, Ghoniem, Swaminarayan, and LeSar, J. Comp. Phys. 219, 608 (2006)

41



Step 1: parametric dislocations
,:(1 3u? +2u )15 +(3u?-2u°

/

® track the motion of
the nodes

® remesh as needed

("

!

i \\. l’l '-, !
‘ \ '-, ‘1\

' W il

" ‘\:}i\‘lll1i *',', F'
IR

Vi

Ghoniem, Tong, and Sun, Phys. Rev. B 61, 913 (2000);
Wang, Ghoniem, Swaminarayan, and LeSar, J. Comp. Phys. 219, 608 (2006)

(u 2u? ué)f+( u? +u®

e

42



Step 2: stresses and forces

N B ~ force on dislocation
F = (b 0 ) X  calculated from stress:
Peach-Koehler Force

stress comes from many sources

_ (ab)
- Gext T Gdefect T Gself T ZG

b+a

stress from an individual dislocation

G(a)

b
o, = ‘é 2| Ry (£ + €@, )+ (R =8, )L,

.

 ®R 1
o ox axj ox, R?

N.
segment ' Vint
evaluated numerically: <j>f (Nde— 3 > wf(r,)
a=1 qg=1
basic method: Wang, Ghoniem, Swaminarayan, and LeSar, J. Comp. Phys. 219, 608 (2006)
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Step 2: stresses and forces

2 [3] [4]
[1] 3 4

[5]

If use discrete linear
6] | segments

see Hirth and Lothe, Theory of Dislocations
Devincre, Solid State Comm 93, 875 (1995)

stress at point | from a segment
from A to B Is an analytic
expression made up of more
tensors

from stress can find the force.
below we will discuss how to

calculate stress on nodes from
stress on segments

44



Step 2: self stresses

Two terms:

e core energy increases with length of dislocation so it
opposes dislocation growth:

Ecore T b2
— =
1 H

* |nteraction of one part of a dislocation with itself
5

—

b

45



Step 4: equations of motion and dynamics

e full equation of motion (required at least at large €):

—_

ma=F—-yv
e over-damped limit (ignore inertial effects): V = F/ 4

e for force velocity: determine forces on the nodes and
solve the equations of motion

r(t+ot)=r(t)+v(t)ot
* time step limited by largest force

Note: as we shall discuss below, the forces and velocities
of the nodes requires some attention.

“Dislocation motion in high-strain-rate deformation,” Wang, Beyerlein, and LeSar,
Phil. Mag. 87, 2263 (2007).
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Step 5: some approximations

dislocation reactions
e treated with models
e [gnore partials (more on this below)

coupling of dislocation motion to geometry

e Wwe ignore the effects of lattice rotations caused by the
dislocations

e many issues with boundary conditions, with the
modeling of bulk plasticity being much more
challenging than modeling of small-scale plasticity

47



Step 5: models

cross slip: A Monte Carlo method is used to

determine whether cross-slip is activated.

- [101] (111) plane

(111) plane K |:—L(TO—TCS):|
b P = L ot gl "o’ fort <t

P = for T >T,

Kubin LP et al., Scripta Mater. (1992)

Frank-Read sources, annihilation, and junction forming

I

(0 ()

annihilation

e.qg., climb, ...7?

)

junction

whart else should we include:

48



Summary of the approximations

e all atomistic-based processes described with models
e mMost codes ignore partial dislocations
e Most materials are anisotropic not isotropic

e We ignore the effects of lattice rotations caused by the
dislocations (except as a post-process)

e poundary conditions are a challenge, with the modeling
of bulk plasticity being more challenging than modeling
of small-scale plasticity

o we typically approximate long-range interactions

49



steps in a simulation

e choose Initial conditions and stress
- place dislocations randomly on possible slip planes

e calculate total stresses on each node by integrating
over all dislocations and find forces

e calculate If cross slip occurs

e 3solve equations of motion (nodes move)
e check for junctions, annihilations, etc.

e repeat

from movement of dislocations, calculate plastic strain

analyze dislocation structures, densities, etc.

50



An example:
a simple Frank-Read Source



example: a line-tension based Frank-Read
source

DislocationDynamics.pdf also contains an explanation of
this model. A folder called DDFR in the folder “code”
contains MATLAB code this model.

50

The goal is to simulate:

40 }

30+ //’ \
s b

Nota bene: for a more complete discussion, wr Y
see ." !

10-| |-

Computer Simulations of Dislocations, V. V.

Bulatov and W. Cai, (Oxford University Press,

o\ ‘\, f/ ® /]
."l b /
New York, 2006 o \ N~

and for more complete MATLAB codes, see

http://micro.stanford.edu/~caiwei/Forum/
2005-12-05-DDLab/

-2930 -2:] -I;J 0 10 20 30 40
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http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/
http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/

the model

We start with a dislocation
pinned at both ends. |
X

This segment has

b=b(0,1,0) and &=(1,0,0)
and is thus what kind of dislocation?

The glide plane is in the xy plane. The forces in the glide

plane are: X
= (13-(7)><§

~ | =

=bo,.(-¢,.6.)=b7(-¢,.8,)

~ | "4
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representation of the dislocation and nodal

forces

Add nodes to dislocation
and connect with

[1]

[2

|

[3]

4

[4]

5

[5]

6

[6]

7

straight segments.

Force on segment / is constant along the segment:

F;'S =b T(_gy’gx)gi

e \weighted average of force on segments
e for constant force on segments  f = (

Force on node

Line tension force on I Bl —

o £, is the line energy

£ (-8 +é)

FS+FS

)72




velocity

2 3] [4] [5]
[1] 3 4 5 6]

x|

1 7

velocity of a node Is dependent on velocity of the segment

e cach point on the segment has a different force, and
thus different velocity (v = M F)

e as Bulatov and Cai describe, the velocity is a weighted
average

e they give an approximate expression, which we use

I‘;’;n
" B(l_,+1,)/2

—>nNn

o~

use Euler equation (or something better) for EOM
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limitations of model code

® NO Interactions between segments

e NO annihilation

However, it will show you how the lbasic method works.

And you can make movies.

56



a better calculation of an FR source

operation of a source in a thin film

57



. Applications




1. Some successes:
small-scale
plasticity

59



dislocation dynamics simulations have proven
very successful for small-scale systems

4 examples showing how changes in interfaces change
plasticity:

e small scales with free surfaces (micropillars)’<
e gsmall scales with coated surfaces (micropillars)?
e polycrystalline thin fiims with free surfaces*

e polycrystalline thin films with coated surfaces®

" Zhou, Biner and LeSar, Acta Mater. 58, 1565 (2010).

2 Zhou, Beyerlein and LeSar, Acta Mater. 59, 7673 (2011).
3 Zhou, Biner and LeSar, Scripta Mater. 63, 1096 (2010,.
4 Zhou and LeSar, Int. J. Plasticity 30-31, 185 (2012).

° Zhou and LeSar, Comput. Mater. Sci. 54, 350 (2012).

small scale plasticity is the perfect problem for DDD - small
numbers of dislocations and straightforward boundary conditions
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free surfaces

Finite Volume Problem

rr—

T" on S, T on S,

4) f/\\” Q

u” on .S",

|
A

-

~
A

NN

e

-,

uonsS,

4

. boundary element method

Infinite Medium Problem
(Dislocations i an imfinmte volume)

Correction Problem

(Finite volume & no dislocations)

;‘. = .I“ ‘ }'

Total displacement and stress fields:

u;

= U, +uij

Gij :Gi/' -I-GU

U l.jand o . are the image fields that enforce the boundary conditions.

iTl.]. and O i are the displacement and stress fields in an infinite medium from all dislocations.

El-Awady, Biner, and Ghoniem (2008) ¢:
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sample preparation (no ions required)

7 Before relaxation After relaxation
A [;69] Density = 2.7x10™¥ m?  Density =1.8x1013 m™
L7~
N
// /, 3 V e
l‘ 7/
! // .- Fot
269] p 001] et ,
cutting S / L cutting
A—f\__J /
A
] | > Y
A |
- _ |
Ty
D=1.0, 0.75 and 0.5um
D:H=1:2 (Dotted lines are BEM meshes)

¢ nitial conditions shown to have large effect of calculated response in
small systems: Motz, Weygand, Senger, Gumbsch, Acta Mater 57,
1744 (2009).
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stress-strain behavior of Ni

Engeering Stress (MPa)

(o)

Engineering Stress (MPa)

450

400}
350}
300}
250}
200}
150} |
100}

S0}

ol

S

300

—Strain-stress for [001]
—Strain-stress for [269] | |
- Strain-density for [001]
- Strain-density for [269]| 1

0.4 0.6 0.8 1

Total Engeering Strain (%)

1 I 1 I
B -
2 . o
Sample Diameter
,"'{ ' 1 um
."-'J -  5um
, — 20 um
bt
‘\";‘ >
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3

1 micron samples

calculated

onset of flow:
e~ 0.003

1 micron samples

experimental

onset of flow:
g ~ 0.008

differences
arise from:
Strain rate,
equation of
motion, ...
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loading and flow N

loading regime:
iIntermittent flow, but
are they avalanches”?

)

Dislocation Density (1 d%m

Engeering Stress (MPa)
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ol
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loading

see “Scale free intermittent flow in crystal plasticity,” Dimiduk,
Woodward, LeSar, and Uchic, Science 312, 1188 (2006).

flow
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a simple model for a free-standing polycrystalline

thin film

simulation cell

free surfaces on all sides

9 grains, all with same
orientation

tension under constant strain
rate

all stress-strain-density
behavior calculated from
internal grain only, averaged
over 10 realizations
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DD model of dislocation-grain boundary
interactions

sin”! (b/s) / degree

IO_II I I |IIIIII I I IIIIJ_

- Q- - -- thisLAGB

10! |102 10°
jz Burgers vector [1 117 [111][111][1111{0¢C, s
"7 (b) after successful penetration from situation ()
e [ow angle GB (0.3°) modeled with e atomistic simulations are also
Interpenetrating mesh of dislocations being done, but each
¢ modeled transmission of dislocations orientation and dislocation are
through the LAGB different

Simulation of dislocation penetration through a general low-angle grain boundary
B. Liu, P. Eisenlohr, F. Roters, D. Raabe, Acta Mater 60, 5380 (2012)
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transmission model at grain boundaries

grain boundary/dislocation interactions (de Koning et al.
2002)

Outgoing dislocation, b,

Grain 2
LGB Q _____
| }
Grain 1 Residual dislocation, Ab
® ® transmission stress adjusted
N / to match experimental

Incoming dislocation, b; stress-strain relation
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setting transmission stress: Tee

a___ databyXiang etal (2006) b _

800
7000 | Experiment data
oo T = +0
— GB
o 600¢
3
w
v
o
B

Dislocation Density (1d2 m'2)

01 02 03 04 05 08 07
Total Engeering Strain (%)

—a

-
=
|
-~
|
o

B 8
L
| I ||
ot
.
N

28 & 8 8

01 02 03 04 05 06 07
Total Engineering Strain (%)

TeB = 5 TFR
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comparison with experiment

y

Yield stress, o (MPa)

700

600

o)
o
)

400

300

200

100

* & A D

D =250 nm o D=500nm
D=1000nm © D =1500nm
Cu freestanding (Gruber et.al.) |
Cu freestanding (Xiang et.al.)

Reciprocal of film thickness, 1/H (um™)

Excellent agreement
with experimental
stress-strain behavior,
but ...

IS this a definitive test
of the method?
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dislocation structures

7 D =500 nm
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dependence
onD and H

» dependence of yield a "~
stresson D as a
function of film
thickness

o500 ¢

y

250 ¢
e approaches Hall-Petch

relation for thick films
(H=1.5pm)

Yield stress, o (MPa)

H = 1000 nm \o ~D"
H= 1500 nm
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outlook

e for small-scale samples, DD simulations have led the
way in developing understanding of the deformation
mechanisms

e py controlling physics, we can examine the role of
different physical processes (e.g., cross slip)

e |imited by the assumptions mentioned earlier

e With better connection to experiments (esp. structure),
we should be able to examine the “correctness” of the
predictions, which can guide the development of better
models
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. A challenge: bulk
plasticity




2. Can we model with DD the development of
dislocation substructures?

Slngle crystal Cu in smgle sI|p Stage 1

we will use as an example
a study of high strain rate
response done In
collaboration with Los
Alamos

Szekely, Groma, Lendvai, Mat. Sci. Engin. A 324, 179 (2002)
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computational challenges

the dislocation density increases with stress p"“ o< 7

e calculations slow with increasing stress, with the

computational time per time step increasing as

n c>cLocpc>c’L'2 t OCn2 OCT4

node comp node

time steps decrease with increasing dislocation density

e typically use dynamic time stepping because of very
large dislocation interaction stresses (based on a
maximum distance a dislocation can move)

e time steps are small (can be as small as 1019 sec)

e as density increases, have more pileups and larger
stresses and thus smaller time steps: 6t ~1/ 1
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boundary conditions

e must have transport of dislocations into and out of the
simulation cell

e periodic boundary conditions can be a problem.

- Madec, Devincre and Kubin, “On the use of periodic boundary
conditions in dislocation dynamics simulations”, Solid Mechanics
and Its Applications 115, 35-44 (2004)

e can avoid many of these issues with large cells (slow
calculations), but still have long-ranged interactions

e may be best to use large cylinders whose properties
seem to be bulk-like
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periodic boundary conditions
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a typical initial structure

assume an initial set of Frank-Read

sources randomly placed on
avallable slip systems

under stress, they bow out
and Interact with other
dislocations

as the length of dislocations
Increases, so does the
complexity of the microstructure

d

,’
A\

y /

/ /
X /
\ .

5 um cube
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studies at high strain rate on Cu single crystals

effects of loading 2 "%
on dislocation

Mmicrostructures
and deformation

Schmid factors:
[111]<[211] < [100] .0-1)

(-111)

v

interest in hlgh Strain rate: 10°s™
rates: e.g., Plastic strain: 0.15%
impact damage

“Plastic anisotropy in fcc single crystals in high rate deformation,” 5 Um Ccu beS
Wang, Beyerlein, and LeSar, IJP 25, 26-48 (2009)
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S

slip bands in [111] load

viewed along [100] viewed along [110]

5 Um cube

Is this an artifact of the boundary conditions?

“Plastic anisotropy in fcc single crystals in high rate deformation,”
Wang, Beyerlein, and LeSar, IJP 25, 26-48 (2009)
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dislocation density on |11

¢ slip bands are
approximately 0.2 pm
wide

e pand spacing varies
between 0.1-1 pm

® spacing between fine
bands within bands is
0.01 pm

(a) 14r

0t g =10%s™
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P1-11) (107cm™?)
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=~ 6F . .
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hardening

Experimental data

a B % b e g : L A:>=10%s
(@) 1500 , 7 solid: with cross-slip (®) 1500 [ solid: with cross-slip y B:~10"/s

[ +~ dashed: no cross-slip [ dashed: no cross-slip ,”~ <i:<=1o"/s
s ' 10657 2 L AT ~10"/s
£ 1000 £ 1000 ;7 i L
7 I 3 ! SR e
- i e F A
»vn 500 F ”’,,—'ﬂ"7—{055—1 w2 500 + /// >1055—1 B

: - = 4 1 : Z . 104 S_l i A

, 10t P ~ C

i e e [ B ~2000/s

O‘....l.‘l.l.l..l..l.l. 0 ............... A\
0 005 01 015 02 0 0.5 1 . i
Plastic strain (%) Total strain (%) '"IOU;Z_O%
strain
E E=E +E&
P e P

® high-rate behavior differs from that at low rates, which is
controlled by obstacles and thermal activation

e essentially all dislocations are glissile

¢ slip bands act as “deformation highways”: processes in slip-
band formation are the dominant deformation mechanisms

What is the effect of the boundary conditions?
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3. stage |l hardening by DD simulations

Kubin et al. used DD to examine the hardening rate based on
calculating the mean free path of the dislocations along various
slip planes (replacing dependence on experiment in Kocks
model), assuming uniform densities per slip system.

16 -

Application to various metals at N
room temperature: ] /o/°/
e they obtain qualitative, but not o- o
quantitative agreement with _— o o4
experiment. 6- /
e in many ways a 2D model g /°
(mean free path on different slip 2—:#/
systems) o
Kubin, Devincre, and Hoc, Intl. J. "o
Mater. Res. (2009). Model not essentially different from the
T gosy o, Seience 320 2D phase-field modeling of Koslowski et

al., PRL 93, 265503 (2004)
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stage ll: their conclusions

1. they have not solved stage Il, though they made
Progress

2. they believe that it is possible

3. they cannot predict the transition between stages

“There Is presently no generally accepted theory explaining
how and why organized dislocation microstructures
emerge during plastic flow.” Kubin, Devincre, and Hoc, Intl.
J. Mater. Res. (2009).
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V. some more examples

e strain hardening: e.g., Kubin and coworkers mapped out
aspects of Stage |l strain hardening in fcc crystals, Devincre, Hoc,
and Kubin, Science 320, 1745 (2008); Kubin, Devincre, and
Thierry, Intern. J. Mater. Res. 100, 1411 (2009).

e fatigue: Fivel and coworkers applied 3D dislocation simulations
to the early stages of fatigue, with applications to fatigue in: steel
[Déprés, Robertson, and Fivel, Phil. Mag. 84, 2257 (2004); ibid.
86, 79 (2000)], fcc materials [Déprés, Fivel, and Tabourot, Scripta
Mater. 58, 1086 (2008)], and precipitation hardened materials
[Shin, Robertson, and Fivel, Phil. Mag. 87, 3657 (2007)]

silicon: see work from K. W. Schwarz, for example, with
PARANOQOID code

Others of note: Weygand/Gumbsch/... : many calculations,
iIncluding small-scale plasticity
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. Outlook and
needs




Summary of some of the approximations

e all atomistic-based processes described with models
e mMost codes ignore partial dislocations

e |nteractions are long-ranged

e Most materials are anisotropic not isotropic

e Wwe ignore the effects of lattice rotations caused by the
dislocations (except as a post-process)

e poundary conditions are a challenge, with the modeling
of bulk plasticity being much more challenging than
modeling of small-scale plasticity

e we need more sensitive tests to tell us what is and is not
Important. Structures matter SO microscopy is key.
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Outlook for calculating bulk mechanical

properties

e Simulations are limited by: size, boundary conditions, and
all the approximations mentioned above.

e |Limited success for DD in modeling dislocation
substructure development.

e Thus, prediction of hardening has not lbeen possible.

e “The present dislocation-based models for strain
hardening still have difficulties integrating elementary
dislocation properties into a continuum description of bulk
crystals or polycrystals. As a conseguence, current
approaches cannot avoid making use of extensive
parameter fitting.” - Devincre, Hoc, Kubin, Science 2008.
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Needs

o Better connection to experiment: “The feedback loop
between theory, simulation and experiment for plasticity
and property modeling,” T. M. Pollock and R. LeSar,
Current Opinion in Solid State and Material Sciences 17,
10-18 (2013).

e As noted above, we need to link to experimentally
measured dislocation substructures

e \We will do this in collaboration with Marc DeGraef, using
methods he discussed Monday

e With better connection to experiments (esp. structure), we
should be able to examine the “correctness” of the
predictions, which can guide the development of better
models.
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(S)TEM Defect Simulations

Darwin-Howie-Whelan equationS'

dSg(2) , e e g’(r)
(iz = 2MiSgSg —|—17TZ Se’ (2)

Displacement field

Nd \
Qg(r) = 27g - Z R;(r) = 27wg - Ry(r)

1 1 pi(0g—0g)
— -1
dg {g gé
/ N\

Extinction distance = Absorption length

Scattering matrix

Reformulate as a matrix problem: /
dS .
B _iams(z) —— S(6) = ¢S (0) = S(OS(0)
<
: : : From:
Propagation = scattering matrix product Marc De Graef

S(2) = S(2,)S(Zm_1) - - - S(22)S(21)S(0)
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fcc-Al, 200 keV
. o 100 nm foil, “slightly bent”
parallel illumination 6 perfect dislocations, 3 stacking faults
- 50 spherical voids, 50 spherical inclusions
rom: .
Vare De Graef (020) systematic row, 9 beams

Example

bright field dark field




Calculated (S)TEM results

e calculation of the displacements

. bQ A
ui(R): e :Bﬂcﬁ ik/b/R,
) i
R. = IR
T 9X,0X
segment Nint
pr(nde— Y Dwfr,)
a=1 qg=1

e (Complication: €2 is discontinuous in dislocation plane.

e [From displacements, we will calculate the expected STEM
signal, enabling us to better compare with data.
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. Questions?
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